Saturday, 4 November 2017

Promedio Móvil Versus Promedio Final


Simple Vs. Los promedios móviles exponenciales son más que el estudio de una secuencia de números en orden sucesivo. Los primeros practicantes del análisis de series de tiempo estaban más preocupados por los números de series temporales individuales que por la interpolación de esos datos. Interpolación. En forma de teorías de probabilidades y análisis, se produjo mucho más tarde, a medida que se desarrollaron patrones y se descubrieron correlaciones. Una vez comprendidas, se dibujaron varias curvas y líneas de forma a lo largo de las series de tiempo en un intento de predecir dónde podrían ir los puntos de datos. Éstos ahora se consideran los métodos básicos usados ​​actualmente por los comerciantes técnicos del análisis. Análisis de la cartografía se remonta a Japón del siglo 18, sin embargo, cómo y cuando los promedios móviles se aplicó por primera vez a los precios de mercado sigue siendo un misterio. Se entiende generalmente que los promedios móviles simples (SMA) se usaron mucho antes de los promedios móviles exponenciales (EMA), porque los EMAs se construyen sobre el marco SMA y el continuo SMA fue más fácil de entender para el trazado y los propósitos de seguimiento. Promedios móviles simples (SMA) Los promedios móviles simples se convirtieron en el método preferido para el seguimiento de los precios de mercado porque son rápidos de calcular y fáciles de entender. Los primeros profesionales del mercado operaban sin el uso de las métricas de gráficos sofisticados en uso hoy en día, por lo que se basaron principalmente en los precios de mercado como sus únicos guías. Ellos calcularon los precios de mercado a mano, y graficaron esos precios para indicar tendencias y dirección de mercado. Este proceso fue bastante tedioso, pero resultó bastante rentable con la confirmación de nuevos estudios. Para calcular una media móvil sencilla de 10 días, simplemente añada los precios de cierre de los últimos 10 días y divida por 10. La media móvil de 20 días se calcula sumando los precios de cierre en un período de 20 días y divida por 20, y pronto. Esta fórmula no sólo se basa en los precios de cierre, pero el producto es una media de los precios - un subconjunto. Los promedios móviles se denominan movimientos porque el grupo de precios utilizado en el cálculo se mueve de acuerdo al punto del gráfico. Esto significa que los días viejos se abandonan a favor de los nuevos días de cierre de precios, por lo que se necesita siempre un nuevo cálculo que corresponda al marco temporal del promedio empleado. Por lo tanto, un promedio de 10 días se recalcula añadiendo el nuevo día y cayendo el día 10, y el noveno día se deja caer en el segundo día. Promedio móvil exponencial (EMA) El promedio móvil exponencial ha sido refinado y más comúnmente utilizado desde la década de 1960, gracias a los experimentos de los practicantes anteriores con la computadora. La nueva EMA se centraría más en los precios más recientes que en una larga serie de puntos de datos, ya que se requiere la media móvil simple. EMA actual ((Precio (actual) - anterior EMA)) X multiplicador) EMA anterior. El factor más importante es la constante de suavizado que 2 / (1N) donde N el número de días. Una EMA de 10 días 2 / (101) 18.8 Esto significa que una EMA de 10 periodos pesa el precio más reciente 18.8, un EMA de 20 días de 9.52 y 50 días de EMA 3.92 de peso en el día más reciente. La EMA trabaja ponderando la diferencia entre el precio de los períodos actuales y la EMA anterior, y agregando el resultado a la EMA anterior. Cuanto más corto sea el período, más peso se aplicará al precio más reciente. Líneas de Ajuste Mediante estos cálculos, se trazan puntos, revelando una línea de ajuste. Las líneas de ajuste por encima o por debajo del precio de mercado significan que todos los promedios móviles son indicadores rezagados. Y se utilizan principalmente para seguir las tendencias. No funcionan bien con los mercados de la gama y los períodos de la congestión porque las líneas de la adaptación no denotan una tendencia debido a una carencia de los altos o de los altos más bajos evidentes. Además, las líneas de ajuste tienden a permanecer constantes sin indicio de dirección. Un aumento de la línea de montaje por debajo del mercado significa un largo, mientras que una línea de caída de ajuste por encima del mercado significa un corto. (Para obtener una guía completa, lea nuestro Tutorial de Moving Average). El propósito de emplear una media móvil simple es detectar y medir tendencias al suavizar los datos utilizando los medios de varios grupos de precios. Se observa una tendencia y se extrapola en un pronóstico. Se supone que los movimientos de tendencias anteriores continuarán. Para la media móvil simple, una tendencia a largo plazo se puede encontrar y seguir mucho más fácil que una EMA, con la suposición razonable de que la línea de ajuste se mantendrá más fuerte que una línea EMA debido a la mayor atención a los precios medios. Un EMA se utiliza para capturar movimientos de tendencia más cortos, debido al enfoque en los precios más recientes. Por este método, un EMA supone para reducir cualquier rezago en la media móvil simple así que la línea del ajuste abrazará precios más cercano que una media móvil simple. El problema con la EMA es el siguiente: Su tendencia a romper los precios, especialmente durante los mercados rápidos y períodos de volatilidad. La EMA funciona bien hasta que los precios rompen la línea de ajuste. Durante los mercados más altos de la volatilidad, usted podría considerar el aumento de la longitud del término medio móvil. Incluso se puede cambiar de un EMA a un SMA, ya que el SMA suaviza los datos mucho mejor que una EMA debido a su enfoque en medios a más largo plazo. Indicadores de Tendencia Como indicadores rezagados, los promedios móviles sirven como líneas de apoyo y resistencia. Si los precios descienden por debajo de una línea de ajuste de 10 días en una tendencia al alza, es probable que la tendencia al alza pueda estar disminuyendo, o al menos el mercado pueda estar consolidándose. Si los precios se rompen por encima de un promedio móvil de 10 días en una tendencia bajista. La tendencia puede estar disminuyendo o consolidándose. En estos casos, emplee un promedio móvil de 10 y 20 días juntos y espere a que la línea de 10 días cruce por encima o por debajo de la línea de 20 días. Esto determina la siguiente dirección a corto plazo para los precios. Para períodos de más largo plazo, observe los promedios móviles de 100 y 200 días para la dirección a más largo plazo. Por ejemplo, usando los promedios móviles de 100 y 200 días, si el promedio móvil de 100 días cruza por debajo del promedio de 200 días, se llama cruz de muerte. Y es muy bajista para los precios. Un promedio móvil de 100 días que cruza por encima de un promedio móvil de 200 días se llama la cruz de oro. Y es muy optimista para los precios. No importa si se utiliza un SMA o un EMA, porque ambos son indicadores de tendencia. Es sólo en el corto plazo que la SMA tiene ligeras desviaciones de su contraparte, la EMA. Conclusión Los promedios móviles son la base del análisis gráfico y de series temporales. Los promedios móviles simples y los promedios móviles exponenciales más complejos ayudan a visualizar la tendencia suavizando los movimientos de precios. El análisis técnico a veces se refiere como un arte en lugar de una ciencia, que llevan años para dominar. (Entender más en nuestro Tutorial de Análisis Técnico.) Cuando se calcula un promedio móvil en ejecución, colocar el promedio en el período de tiempo medio tiene sentido En el ejemplo anterior calculamos el promedio de los primeros 3 períodos de tiempo y lo colocamos al lado del período 3. Nosotros Podría haber colocado el promedio en el medio del intervalo de tiempo de tres períodos, es decir, al lado del período 2. Esto funciona bien con períodos de tiempo impares, pero no tan bueno para incluso períodos de tiempo. Entonces, ¿dónde colocaríamos el primer promedio móvil cuando M 4 Técnicamente, el promedio móvil caería en t 2,5, 3,5. Para evitar este problema, suavizar las MA con M 2. Así, suavizar los valores suavizados Si la media de un número par de términos, tenemos que suavizar los valores suavizados La siguiente tabla muestra los resultados utilizando M 4. Si ve este mensaje, Su navegador ha desactivado o no es compatible con JavaScript. Para utilizar todas las funciones de este sistema de ayuda, como la búsqueda, el navegador debe tener habilitado JavaScript. El promedio de los números n, n1 y n2 en la columna QuotOriginal Valuesquot (donde quotnquot se refiere a la posición de la fila) se coloca en la posición n2 de la fila de la columna quot3 - Monimo columna de promedio móvil simple. Esta técnica de visualización de la media móvil se conoce como quotTrailing Averagesquot. Una técnica de visualización alternativa se conoce como promedios cuaternarios, que en su lugar posiciona el promedio móvil en la fila central de la ventana. La siguiente tabla ilustra la diferencia en estas técnicas de visualización usando los primeros tres valores de arriba: Promedios Centrados y Traslados QuotCentered Promedioscuta visualización requiere cálculos adicionales cuando la ventana es un número par y no está disponible para Promedios Móviles Simples y otras Funciones de Movimiento en este hora. Todas las funciones quotMoving en esta implementación en particular mostrarán datos de acuerdo con el principio quotTrailing Averagesquot. Observe también que a partir de las dos tablas anteriores, la visualización de quotTrailing Averagesquot hace que las filas de datos de resultados n-1 (donde n tamaño de ventana inicial) no tengan valor (las filas 1 y 2 están en blanco en los ejemplos anteriores). Este es el estándar generalmente aceptado para los términos quotn-1quot iniciales y es el estándar adoptado para la implementación de la mayoría de las Funciones de Movimiento. La tabla siguiente ilustra el cálculo mensual de los datos mensuales de ventas anteriores usando la media de promedios de trazado. Se pueden evaluar los promedios móviles simples del rango original de valores para una ventana de 3 (es decir, en este caso, un promedio móvil simple de 3 meses) A ser: Promedio móvil simple de 3 meses

No comments:

Post a Comment